WARNINGS
Included as part of the "PRECAUTIONS" Section
PRECAUTIONS
Hypersensitivity
Special Warning
The special warnings and precautions relevant to both abacavir and lamivudine are included in this section. There are no additional precautions and warnings relevant to KIVEXA tablets.
Hypersensitivity to abacavir (see Section ADVERSE REACTIONS). Hypersensitivity to abacavir is a multi-organ clinical syndrome which can occur at any time during treatment, but most often occurs within the first 6 weeks of therapy. Signs or symptom usually present in 2 or more of the following groups although hypersensitivity following the presentation of a single sign or symptom has been reported infrequently.
- fever
- rash
- gastrointestinal, including nausea, vomiting, diarrhoea, or abdominal pain
- constitutional, including generalized malaise, fatigue, or achiness
- respiratory, including dyspnoea, cough, or pharyngitis.
Hypersensitivity reactions may present similarly to pneumonia, bronchitis or pharyngitis, influenza-like illness or gastroenteritis.
- Discontinue KIVEXA as soon as a hypersensitivity reaction is suspected.
- If hypersensitivity reaction cannot be ruled out, KIVEXA or any other medicinal product containing abacavir must not be restarted.
- The risk is significantly increased for patients who test positive for the HLA-B*5701 allele. However, abacavir hypersensitivity reactions have been reported at a lower frequency in patients who do not carry this allele.
- KIVEXA is not recommended for use in patients with the HLA-B*5701 allele or in patients who have had a suspected abacavir HSR while taking any medicinal product containing abacavir.
- Testing for HLA-B*5701 status is recommended before initiating abacavir treatment and also before re-starting abacavir treatment in patients of unknown HLA-B*5701 status who have previously tolerated abacavir.
- The diagnosis of hypersensitivity reaction is based on clinical judgment. If a hypersensitivity reaction is suspected, KIVEXA must be stopped without delay, even in the absence of the HLA-B*5701 allele. Delay in stopping treatment with abacavir after the onset of hypersensitivity may result in a life-threatening hypotension and death.
- Rarely, patients who have stopped abacavir for reasons other than symptoms of hypersensitivity reaction have also experienced life-threatening reactions within hours of re-initiating abacavir therapy. Therefore, if a hypersensitivity reaction is ruled out, the reintroduction of KIVEXA or any other abacavir-containing product is recommended only if medical care can be readily accessed.
- Each patient should be reminded to read the Consumer Medicine Information. They should be reminded of the importance of removing the Alert Card included in the pack, and keeping it with them at all times.
- Patients who have experienced a hypersensitivity reaction should be instructed to dispose of their remaining KIVEXA tablets in order to avoid restarting abacavir.
Lactic Acidosis/Severe Hepatomegaly With Steatosis
Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of antiretroviral nucleoside analogues alone or in combination, including abacavir and lamivudine in the treatment of HIV infection. A majority of these cases have been in women. Clinical features which may be indicative of the development of lactic acidosis include generalised weakness, anorexia and sudden unexplained weight loss, gastrointestinal symptoms and respiratory symptoms (dyspnoea and tachypnoea). Caution should be exercised when administering KIVEXA tablets, particularly to those with known risk factors for liver disease. Treatment with KIVEXA tablets should be suspended in any patient who develops clinical or laboratory findings suggestive of lactic acidosis with or without hepatitis (which may include hepatomegaly and steatosis even in the absence of marked transaminase elevations).
Fat Loss Or Fat Gain
Fat loss or fat gain has been reported during combination antiretroviral therapy. The long term consequences of these events are currently unknown. A causal relationship has not been established.
Serum Lipids And Blood Glucose
Serum lipid and blood glucose levels may increase during antiretroviral therapy. Disease control and life style changes may also be contributing factors. Consideration should be given to the measurement of serum lipids and blood glucose. Lipid disorders should be managed as clinically appropriate.
Immune Reconstitution Syndrome
In HIV-infected patients with severe immune deficiency at the time of initiation of anti-retroviral therapy (ART), an inflammatory reaction to asymptomatic or residual opportunistic infections may arise and cause serious clinical conditions, or aggravation of symptoms. Typically, such reactions have been observed within the first few weeks or months of initiation of ART. Relevant examples are cytomegalovirus retinitis, generalised and/or focal mycobacterial infections and Pneumocystis jiroveci pneumonia (often referred to as PCP). Any inflammatory symptoms must be evaluated without delay and treatment initiated when necessary. Autoimmune disorders (such as Graves’ disease, polymyositis and Guillain-Barre syndrome) have also been reported to occur in the setting of immune reconstitution, however, the time to onset is more variable, and can occur many months after initiation of treatment and sometimes can be an atypical presentation.
Post-Treatment Exacerbations Of Hepatitis B
Clinical study and marketed use of lamivudine, have shown that some patients with chronic hepatitis B virus (HBV) disease may experience clinical or laboratory evidence of recurrent hepatitis upon discontinuation of lamivudine, which may have more severe consequences in patients with decompensated liver disease. If KIVEXA tablets are discontinued in patients co-infected with hepatitis B virus, periodic monitoring of both liver function tests and markers of HBV replication should be considered.
Opportunistic Infections
Patients receiving KIVEXA tablets or any other antiretroviral therapy may still develop opportunistic infections and other complications of HIV infection. Therefore, patients should remain under close clinical observation by physicians experienced in the treatment of these associated HIV diseases.
Transmission Of Infection
Patients should be advised that current antiretroviral therapy, including KIVEXA tablets, has not been proven to prevent the risk of transmission of HIV to others through sexual contact or blood contamination. Appropriate precautions should continue to be taken.
Mitochondrial Dysfunction
Nucleoside and nucleotide analogues have been demonstrated in vitro and in vivo to cause a variable degree of mitochondrial damage. There have been reports of mitochondrial dysfunction in HIV-negative infants exposed in utero and/or post-natally to nucleoside analogues. The main adverse events reported are haematological disorders (anaemia, neutropenia), metabolic disorders (hyperlactatemia, hyperlipasemia). These events are often transitory. Some late-onset neurological disorders have been reported (hypertonia, convulsion, abnormal behaviour). Whether the neurological disorders are transient or permanent is currently unknown. Any child exposed in utero to nucleoside and nucleotide analogues, even HIV-negative children should have clinical and laboratory follow-up and should be fully investigated for possible mitochondrial dysfunction in case of relevant signs or symptoms. These findings do not affect current national recommendations to use antiretroviral therapy in pregnant women to prevent vertical transmission of HIV.
Myocardial Infarction
Several observational, epidemiological studies have reported an association with abacavir use and the risk of myocardial infarction. Meta-analyses of randomised controlled trials have observed no excess risk of myocardial infarction with abacavir use. To date there is no established biological mechanism to explain a potential increase in risk. In totality the available data from observational studies and from controlled clinical trials show inconsistency and therefore the evidence for a causal relationship between abacavir treatment and the risk of myocardial infarction is inconclusive.
As a precaution the underlying risk of coronary heart disease should be considered when prescribing antiretroviral therapies, including abacavir, and action taken to minimize all modifiable risk factors (e.g. hypertension, hyperlipidaemia, diabetes mellitus and smoking).
General
KIVEXA should not be taken with any other abacavir or lamivudine containing product (3TC, COMBIVIR, TRIUMEQ, TRIZIVIR, ZEFFIX, ZIAGEN).
As part of a triple drug-regimen, KIVEXA is generally recommended for use with antiretroviral agents from different pharmacological classes and not solely with other nucleoside/nucleotide reverse transcriptase inhibitors. This is based on results from randomised, double-blind, controlled studies in which the proportion of subjects with early virological failure (for example tenofovir, lamivudine and abacavir or tenofovir, lamivudine and didanosine) was higher in the triple nucleoside groups than in groups who received regimens involving two nucleosides in combination with an agent from a different pharmacological class. However, consideration needs to be given to a number of factors, including compliance, safety, toxicity and preservation of future treatment options, which also remain important when selecting an appropriate antiretroviral combination for a patient.
Therapy Experienced Patients
In clinical trials patients with prolonged prior NRTI exposure or who had HIV-1 isolates that contained multiple mutations conferring resistance to NRTIs had limited response to abacavir. The potential for cross-resistance between abacavir or lamivudine and other NRTIs should be considered when choosing new therapeutic regimens in therapy-experienced patients with prolonged prior NRTI exposure, or who have HIV-1 isolates containing multiple mutations conferring resistance to NRTIs (see Section CLINICAL PHARMACOLOGY - Cross-resistance).
Use In Hepatic Impairment
See Section Dose And Method Of Administration and Section CLINICAL PHARMACOLOGY - Special populations.
Use In Renal Impairment
See Section Dose And Method Of Administration and Section CLINICAL PHARMACOLOGY - Special populations.
Use In The Elderly
See Section Dose And Method Of Administration.
Paediatric Use
KIVEXA is a fixed combination product not suitable for use in children aged <12 years who weigh less than 40 kg, for whom dosage recommendations vary based on body weight.
Effects On Laboratory Tests
See Section ADVERSE REACTIONS - Table 2.
Use In Specific Populations
Therapeutic Indications
KIVEXA tablets are a combination of two nucleoside analogues (abacavir and lamivudine).
KIVEXA is indicated in antiretroviral combination therapy for the treatment of Human Immunodeficiency Virus (HIV) infection in adults and adolescents from 12 years of age.
Fertility, Pregnancy And Lactation
Effects On Fertility
Abacavir had no adverse effects on the mating performance or fertility of male and female rats at oral doses of up to 427 mg/kg per day, a dose expected to produce exposures approximately 30-fold higher than that in humans at the therapeutic dose based on AUC. Orally administered lamivudine (up to 70 times anticipated clinical exposure based on Cmax) have shown evidence of impairment of fertility in male and female rats.
There are no data on the affect of abacavir or lamivudine on human female fertility.
Use In Pregnancy (Category B3)
There are no adequate and well-controlled studies in pregnant women and the safe use of abacavir, lamivudine or KIVEXA in human pregnancy has not been established. Therefore, administration of KIVEXA in pregnancy should be considered only if the benefit to the mother outweighs the possible risk to the foetus.
Abacavir has been evaluated in the Antiretroviral Pregnancy Registry. Available human data from the Antiretroviral Pregnancy Registry do not show an increased risk of major birth defects for abacavir compared to the background rate. The Antiretroviral Pregnancy Registry has received prospective reports of over 2,000 exposures to abacavir during pregnancy resulting in live birth. These consist of over 800 exposures during the first trimester, over 1,100 exposures during the second/third trimester and included 27 and 32 birth defects respectively. The prevalence (95% CI) of defects in the first trimester was 3.1% (2.0, 4.4%) and in the second/third trimester, 2.7% (1.9, 3.9%). Among pregnant women in the reference population, the background rate of birth defects is 2.7%. There was no association between abacavir and overall birth defects observed in the Antiretroviral Pregnancy Registry.
Lamivudine has been evaluated in the Antiretroviral Pregnancy Registry. Available human data from the Antiretroviral Pregnancy Registry do not show an increased risk of major birth defects for lamivudine compared to the background rate. The Antiretroviral Pregnancy Registry has received reports of over 11,000 exposures to lamivudine during pregnancy resulting in live birth. These consist of over 4,200 exposures during the first trimester, over 6,900 exposures during the second/third trimester and included 135 and 198 birth defects respectively. The prevalence (95% CI) of defects in the first trimester was 3.2% (2.6, 3.7%) and in the second/third trimester, 2.8% (2.4, 3.2%). Among pregnant women in the reference population, the background rate of birth defects is 2.7%. The Antiretroviral Pregnancy Registry does not show an increased risk of major birth defects for lamivudine compared to the background rate.
There is no data available on the treatment with a combination of abacavir, and lamivudine in animals. In reproductive studies in animals, abacavir and lamivudine were shown to cross the placenta.
Studies in pregnant rats showed that abacavir is transferred to the foetus through the placenta. Developmental toxicity (depressed foetal body weight and reduced crown-rump length) and increased incidences of foetal anasarca and skeletal malformations were observed when rats were treated with abacavir at doses of 648 mg/kg during organogenesis (approximately 35 times the human exposure at the recommended dose, based on AUC). In a fertility study, evidence of toxicity to the developing embryo and foetuses (increased resorptions, decreased foetal body weights) occurred only at 427 mg/kg per day. The offspring of female rats treated with abacavir at 427 mg/kg (beginning at embryo implantation and ending at weaning) showed increased incidence of stillbirth and lower body weights throughout life. In the rabbit, there was no evidence of drug-related developmental toxicity and no increases in foetal malformations at doses up to 453 mg/kg (8.5 times the human exposure at the recommended dose, based on AUC).
Lamivudine caused an increase in early embryonic deaths in the rabbit at exposures (based on Cmax and AUC) less than the maximum anticipated clinical exposure. Lamivudine was not teratogenic in rats and rabbits with exposure (based on Cmax) up to 40 and 36 times respectively those observed in humans at the clinical dosage.
There have been reports of mild, transient elevations in serum lactate levels, which may be due to mitochondrial dysfunction, in neonates and infants exposed in utero or peri-partum to nucleoside reverse transcriptase inhibitors (NRTIs). The clinical relevance of transient elevations in serum lactate is unknown. There have also been very rare reports of developmental delay, seizures and other neurological disease. However, a causal relationship between these events and NRTI exposure in utero or peri-partum has not been established. These findings do not affect current recommendations to use antiretroviral therapy in pregnant women to prevent vertical transmission of HIV.
Use In Lactation
No studies have been carried out to determine the effects of the combination of abacavir and lamivudine in lactating animals.
Abacavir and its metabolites are excreted into the milk of lactating rats. A study in lactating rats showed that the concentration of lamivudine in milk was more than four times higher than that in maternal plasma.
Excretion of abacavir and lamivudine in breast milk has been reported in clinical studies, resulting in sub-therapeutic infant plasma levels.
There is no data available on the safety of abacavir and/or lamivudine administered to babies less than three months old.
Breast feeding is not advised because of the potential for HIV transmission from mother to child, and the potential risk of adverse events due to antiretroviral drug excretion in breast milk.
In settings where formula feeding is unsafe or unavailable, the World Health Organisation has provided Guidelines.
Preclinical Safety Data
Genotoxicity
Abacavir was inactive in in vitro tests for gene mutation in bacteria but it showed clastogenic activity against human lymphocytes in vitro and in an in vivo mouse micronucleus test. Abacavir was mutagenic in the absence of metabolic activation, although it was not mutagenic in the presence of metabolic activation in an L5178Y mouse lymphoma assay. Abacavir was not mutagenic in bacterial mutagenicity assays.
Lamivudine was not active in a microbial mutagenicity screen but did induce mutations at the thymidine kinase locus of mouse lymphoma L5178Y cells without metabolic activation. Lamivudine was clastogenic in human peripheral blood lymphocytes in vitro, with or without metabolic activation. In rats, lamivudine did not cause chromosomal damage in bone marrow cells in vivo or cause DNA damage in primary hepatocytes.
Carcinogenicity
There are no data available on the effects of the combination of abacavir and lamivudine in animals.
Carcinogenicity studies with orally administered abacavir in mice and rats showed an increase in the incidence of malignant and non-malignant tumours. Malignant tumours occurred in the preputial gland of males and the clitoral gland of females of both species, and in the liver, urinary bladder, lymph nodes and the subcutis of female rats. Nonmalignant tumours occurred in the liver of mice and rats, Harderian gland of female mice, and thyroid gland of rats. In rats, there were also increased incidences of urothelial hyperplasia and urinary bladder tumours, associated with increased urinary calculi.
The majority of these tumours occurred at the highest abacavir dose of 330 mg/kg/day in mice and 600 mg/kg/day in rats. These dose levels were equivalent to 24 to 33 times the expected systemic exposure in humans. The exception was the preputial gland tumour which occurred at a dose of 110 mg/kg. This is equivalent to six times the expected human systemic exposure.
Mild myocardial degeneration in the heart of mice and rats was observed following administration of abacavir for two years. The systemic exposures were equivalent to 7 to 24 times the expected systemic exposure in humans. The clinical relevance of this finding has not been determined.
When lamivudine was administered orally to separate groups of rodents at doses up to 2000 times (mice and male rats) and 3000 (female rats) mg/kg/day, there was no evidence of a carcinogenic effect due to lamivudine in the mouse study. In the rat study there was an increased incidence of endometrial tumours at the highest dose (approximately 70 times the estimated human exposure at the recommended therapeutic dose of one tablet twice daily, based on AUC). However, the relationship of this increase to treatment is uncertain.