PRECAUTIONS
General
Some viruses, such as B19V (formerly known as Parvovirus B19) or Hepatitis A, are particularly difficult to remove or inactivate. B19V most seriously affects pregnant women, or immune-compromised individuals. Symptoms of B19V infection include fever, drowsiness, chills and runny nose followed about two weeks later by a rash and joint pain. Evidence of Hepatitis A may include several days to weeks of poor appetite, tiredness, and low-grade fever followed by nausea, vomiting and abdominal pain. Dark urine and a yellowed complexion are also common symptoms. Patients should be encouraged to consult their physician if such symptoms appear. Components used in the packaging of this product are latex-free.
Renal Function
Periodic monitoring of renal function tests and urine output is particularly important in patients judged to have a potential increased risk for developing acute renal failure. Assure that patients are not volume depleted prior to the initiation of infusion of GAMMAGARD LIQUID (immune globulin intravenous (human) 10%) . Renal function, including measurement of blood urea nitrogen (BUN)/serum creatinine, should be assessed prior to the initial infusion of IGIV products and again at appropriate intervals thereafter. If renal function deteriorates, discontinuation of the product should be considered.
For patients judged to be at risk of developing renal dysfunction, it may be prudent to reduce the rate of infusion to less than 3.3 mg IgG/kg/min ( < 2 mL/kg/hr).
Hemolysis
IGIV products can contain blood group antibodies which may act as hemolysins
and induce in vivo coating of red blood cells with immunoglobulin, causing
a positive direct antiglobulin reaction and, rarely, hemolysis.28,29,30
Hemolytic anemia can develop subsequent to IGIV therapy due to enhanced red
blood cells (RBC) sequestration (see ADVERSE
REACTIONS).31 IGIV recipients should be monitored for clinical
signs and symptoms of hemolysis (see PRECAUTIONS: Laboratory Tests).
Transfusion-Related Acute Lung Injury (TRALI)
There have been reports of noncardiogenic pulmonary edema (Transfusion Related
Acute Lung Injury [TRALI]) in patients administered IGIV.32 TRALI
is characterized by severe respiratory distress, pulmonary edema, hypoxemia,
normal left ventricular function, and fever, and typically occurs within 1-6
hours after transfusion. Patients with TRALI may be managed using oxygen therapy
with adequate ventilatory support.
IGIV recipients should be monitored for pulmonary adverse reactions. If TRALI
is suspected, appropriate tests should be performed for the presence of anti-neutrophil
antibodies in both the product and patient serumPRECAUTIONS: Laboratory
Tests).
Thrombotic Events
Thrombotic events have been reported in association with IGIV (see ADVERSE
REACTIONS).33,34,35,36,37,38,39,40,41 Patients at risk may
include those with a history of atherosclerosis, multiple cardiovascular risk
factors, advanced age, impaired cardiac output, and/or known or suspected hyperviscosity,
hypercoagulable disorders and prolonged periods of immobilization. The potential
risks and benefits of IGIV should be weighed against those of alternative therapies
for all patients for whom IGIV administration is being considered. Baseline
assessment of blood viscosity should be considered in patients at risk for hyperviscosity,
including those with cryoglobulins, fasting chylomicronemia/markedly high triacylglycerols
(triglycerides), or monoclonal gammopathies (see PRECAUTIONS: Laboratory
Tests).
Aseptic Meningitis Syndrome
An aseptic meningitis syndrome (AMS) has been reported to occur infrequently in association with IGIV treatment. Discontinuation of IGIV treatment has resulted in remission of AMS within several days without sequelae. The syndrome usually begins within several hours to two days following IGIV treatment. It is characterized by symptoms and signs including severe headache, nuchal rigidity, drowsiness, fever, photophobia, painful eye movements, and nausea and vomiting. Cerebrospinal fluid (CSF) studies are frequently positive with pleocytosis up to several thousand cells per cubic mm, predominantly from the granulocytic series, and elevated protein levels up to several hundred mg/dL. Patients exhibiting such symptoms and signs should receive a thorough neurological examination, including CSF studies, to rule out other causes of meningitis. AMS may occur more frequently in association with high dose (2 g/kg) IGIV treatment.
Laboratory Tests
If signs and/or symptoms of hemolysis are present after IGIV infusion, appropriate
confirmatory laboratory testing should be done [see PRECAUTIONS].
If TRALI is suspected, appropriate tests should be performed for the presence
of anti-neutrophil antibodies in both the product and patient serum [see PRECAUTIONS].
Because of the potentially increased risk of thrombosis, baseline assessment
of blood viscosity should be considered in patients at risk for hyperviscosity,
including those with cryoglobulins, fasting chylomicronemia/markedly high triacylglycerols
(triglycerides), or monoclonal gammopathies [see PRECAUTIONS].
Pregnancy Category C
Animal reproduction studies have not been conducted with GAMMAGARD LIQUID (immune globulin intravenous (human) 10%) .
It is also not known whether GAMMAGARD LIQUID (immune globulin intravenous (human) 10%) can cause fetal harm when administered
to a pregnant woman or can affect reproduction capacity. GAMMAGARD LIQUID (immune globulin intravenous (human) 10%) should
be given to a pregnant woman only if clearly indicated. Maternally administered
IGIV products have been shown to cross the placenta, increasingly after 30 weeks
gestation.42,43,44
Use in Pediatrics
The safety and efficacy of GAMMAGARD LIQUID (immune globulin intravenous (human) 10%) has not been evaluated in neonates or infants.
REFERENCES
27. Cayco AV, Perazella MA, Hayslett JP. Renal insufficiency after intravenous immune globulin therapy: a report of two cases and an analysis of the literature. J Am Soc Nephrol. 1997;8:1788-1794.
28. Copelan EA, Strohm PL, Kennedy MS, Tutschka PJ. Hemolysis following intravenous immune globulin therapy. Transfusion. 1986;26:410-412.
29. Wilson JR, Bhoopalam H, Fisher M. Hemolytic anemia associated with
intravenous immunoglobulin. Muscle Nerve. 1997;20:1142-1145.
30. Thomas MJ, Misbah SA, Chapel HM, Jones M, Elrington G, Newsom-Davis J. Hemolysis after high-dose intravenous Ig. Blood. 1993;82:3789.
31. Kessary-Shoham H, Levy Y, Shoenfeld Y, Lorber M, Gershon H. In vivo administration of intravenous immunoglobulin (IVIg) can lead to enhanced erythrocyte sequestration. J Autoimmun. 1999;13:129-135.
32. Rizk A, Gorson KC, Kenney L, Weinstein R. Transfusion-related acute lung injury after the infusion of IVIG. Transfusion. 2001;41:264-268.
33. Brannagan TH, III, Nagle KJ, Lange DJ, Rowland LP. Complications of intravenous immune globulin treatment in neurologic disease. Neurology. 1996;47:674-677.
34. Dalakas MC. High-dose intravenous immunoglobulin and serum viscosity: risk of precipitating thromboembolic events. Neurology. 1994;44:223-226.
35. ElKayam O, Paran D, Milo R, et al. Acute myocardial infarction associated with high dose intravenous immunoglobulin infusion for autoimmune disorders. A study of four cases. Ann Rheum Dis. 2000;59:77-80.
36. Gomperts ED, Darr F. Rapid infusion of intravenous immunoglobulin in patients with neuromuscular diseases. Neurology. 2002;58:1444.
37. Haplea SS, Farrar JT, Gibson GA, Laskin M, Pizzi LT, Ashbury AK. Thromboembolic events associated with intravenous immunoglobulin therapy [abstract]. Neurology. 1997;48:A54.
38. Harkness K, Howell SJ, Davies-Jones GA. Encephalopathy associated with intravenous immunoglobulin treatment for Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry. 1996;60:586.
39. Kwan T, Keith P. Stroke following intravenous immunoglobulin infusion in a 28-year-old male with common variable immune deficiency: a case report and literature review. Can J Allergy Clin Immunol. 1999;4:250-253.
40. Wolberg AS, Kon RH, Monroe DM, Hoffman M. Coagulation factor XI is a contaminant in intravenous immunoglobulin preparations. Am J Hematol. 2000;65:30-34.
41. Woodruff RK, Grigg AP, Firkin FC, Smith IL. Fatal thrombotic events during treatment of autoimmune thrombocytopenia with intravenous immunoglobulin in elderly patients. Lancet. 1986;2:217-218.
42. Hammarstrom L, Smith CI. Placental transfer of intravenous immunoglobulin. Lancet. 1986;1:681.
43. Morell A, Sidiropoulos D, Herrmann U, et al. IgG subclasses and antibodies to group B streptococci, pneumococci, and tetanus toxoid in preterm neonates after intravenous infusion of immunoglobulin to the mothers. Pediatr Res. 1986;20:933-936.
44. Sidiropoulos D, Herrmann U, Jr., Morell A, von Muralt G, Barandun S. Transplacental passage of intravenous immunoglobulin in the last trimester of pregnancy. J Pediatr. 1986;109:505-508.