STABILITY/STORAGE: Note: (reformulated recently - slightly longer stability): Prior to reconstitution, TYGACIL should be stored at 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F). Once reconstituted, TYGACIL may be stored at room temperature for up to 24 hours (up to 6 hours in the vial and the remaining time in the IV bag). Alternatively, TYGACIL may be stored refrigerated at 2° to 8°C (36° to 46°F) for up to 45 hours following immediate transfer of the reconstituted solution into the IV bag. Reconstituted solution must be transferred and further diluted for IV infusion.
DOSAGE (adult patients > 18 years old): initial dose of 100 mg, followed by 50 mg every 12 hours. Infuse over 30 to 60 minutes every 12 hours. Usual treatment duration for complicated skin and skin structure infections or for complicated intra-abdominal infections: 5 to 14 days. The duration of therapy should be guided by the severity and site of the infection and the patient’s clinical and bacteriological progress. In patients with severe hepatic impairment (Child Pugh C), the initial dose of TYGACIL should be 100 mg followed by a reduced maintenance dose of 25 mg every 12 hours. Patients with severe hepatic impairment (Child Pugh C) should be treated with caution and monitored for treatment response.
RECONSTITUTION: Each vial of TYGACIL should be reconstituted with 5.3 mL of 0.9% Sodium Chloride Injection, USP, or 5% Dextrose Injection, USP, to achieve a concentration of 10 mg/mL of tigecycline. (Note: Each vial contains a 6% overage. Thus, 5 mL of reconstituted solution is equivalent to 50 mg of the drug.) The vial should be gently swirled until the drug dissolves. Immediately withdraw 5 mL of the reconstituted solution from the vial and add to a 100 mL IV bag for infusion (for a 100 mg dose, reconstitute two vials; for a 50 mg dose, reconstitute one vial). The maximum concentration in the IV bag should be 1 mg/mL. The reconstituted solution should be yellow to orange in color; if not, the solution should be discarded. Parenteral drug products should be inspected visually for particulate matter and discoloration (e.g., green or black) prior to administration.
SUPPLIED: 50mg lyophilized powder for reconstitution - single-dose 5 mL glass vial.
Microbiology Mechanism of Action Tigecycline, a glycylcycline, inhibits protein translation in bacteria by binding to the 30S ribosomal subunit and blocking entry of amino-acyl tRNA molecules into the A site of the ribosome. This prevents incorporation of amino acid residues into elongating peptide chains. Tigecycline carries a glycylamido moiety attached to the 9-position of minocycline. The substitution pattern is not present in any naturally occurring or semisynthetic tetracycline and imparts certain microbiologic properties to tigecycline. In general, tigecycline is considered bacteriostatic; however, TYGACIL has demonstrated bactericidal activity against isolates of S. pneumoniae and L. pneumophila.
Mechanism(s) of Resistance To date there has been no cross-resistance observed between tigecycline and other antibacterials. Tigecycline is not affected by the two major tetracycline-resistance mechanisms, ribosomal protection and efflux. Additionally, tigecycline is not affected by resistance mechanisms such as beta-lactamases (including extended spectrum beta-lactamases), target-site modifications, macrolide efflux pumps or enzyme target changes (e.g. gyrase/topoisomerases). Tigecycline resistance in some bacteria (e.g. Acinetobacter calcoaceticus-Acinetobacter baumannii complex) is associated with multi-drug resistant (MDR) efflux pumps.
Interaction with Other Antimicrobials In vitro studies have not demonstrated antagonism between tigecycline and other commonly used antibacterials.
Tigecycline has been shown to be active against most of the following bacteria, both in vitro and in clinical infections [see Indications and Usage (1)].
Facultative Gram-positive bacteria Enterococcus faecalis (vancomycin-susceptible isolates) Staphylococcus aureus (methicillin-susceptible and -resistant isolates) Streptococcus agalactiae Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus) Streptococcus pneumoniae (penicillin-susceptible isolates) Streptococcus pyogenes
Facultative Gram-negative bacteria Citrobacter freundii Enterobacter cloacae Escherichia coli Haemophilus influenzae (beta-lactamase negative isolates) Klebsiella oxytoca Klebsiella pneumoniae Legionella pneumophila
Anaerobic bacteria Bacteroides fragilis Bacteroides thetaiotaomicron Bacteroides uniformis Bacteroides vulgatus Clostridium perfringens Peptostreptococcus micros
At least 90% of the following bacteria exhibit in vitro minimum inhibitory concentrations (MICs) that are at concentrations that are achievable using the prescribed dosing regimens. However, the clinical significance of this is unknown because the safety and effectiveness of tigecycline in treating clinical infections due to these bacteria have not been established in adequate and well-controlled clinical trials.
Facultative Gram-positive bacteria Enterococcus avium Enterococcus casseliflavus Enterococcus faecalis (vancomycin-resistant isolates) Enterococcus faecium (vancomycin-susceptible and -resistant isolates) Enterococcus gallinarum Listeria monocytogenes Staphylococcus epidermidis (methicillin-susceptible and -resistant isolates) Staphylococcus haemolyticus
Facultative Gram-negative bacteria Acinetobacter baumannii* Aeromonas hydrophila Citrobacter koseri Enterobacter aerogenes Haemophilus influenzae (ampicillin-resistant) Haemophilus parainfluenzae Pasteurella multocida Serratia marcescens Stenotrophomonas maltophilia
Anaerobic bacteria Bacteroides distasonis Bacteroides ovatus Peptostreptococcus spp. Porphyromonas spp. Prevotella spp.
Other bacteria Mycobacterium abscessus Mycobacterium fortuitum
*There have been reports of the development of tigecycline resistance in Acinetobacter infections seen during the course of standard treatment. Such resistance appears to be attributable to an MDR efflux pump mechanism. While monitoring for relapse of infection is important for all infected patients, more frequent monitoring in this case is suggested. If relapse is suspected, blood and other specimens should be obtained and cultured for the presence of bacteria. All bacterial isolates should be identified and tested for susceptibility to tigecycline and other appropriate antimicrobials.
INDICATIONS AND USAGE TYGACIL is a tetracycline-class antibacterial indicated for the treatment of infections caused by susceptible isolates of the designated microorganisms in the conditions listed below for patients 18 years of age and older:
Complicated Skin and Skin Structure Infections Complicated skin and skin structure infections caused by Escherichia coli, Enterococcus faecalis (vancomycin-susceptible isolates), Staphylococcus aureus (methicillin-susceptible and -resistant isolates), Streptococcus agalactiae, Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Streptococcus pyogenes, Enterobacter cloacae, Klebsiella pneumoniae, and Bacteroides fragilis.
Complicated Intra-abdominal Infections Complicated intra-abdominal infections caused by Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Enterococcus faecalis (vancomycin-susceptible isolates), Staphylococcus aureus (methicillin-susceptible and -resistant isolates), Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides vulgatus, Clostridium perfringens, and Peptostreptococcus micros.
Community-Acquired Bacterial Pneumonia Community-acquired bacterial pneumonia caused by Streptococcus pneumoniae (penicillin-susceptible isolates), including cases with concurrent bacteremia, Haemophilus influenzae (beta-lactamase negative isolates), and Legionella pneumophila.
Usage To reduce the development of drug-resistant bacteria and maintain the effectiveness of TYGACIL and other antibacterial drugs, TYGACIL should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.
Appropriate specimens for bacteriological examination should be obtained in order to isolate and identify the causative organisms and to determine their susceptibility to tigecycline. TYGACIL may be initiated as empiric monotherapy before results of these tests are known.
DOSAGE AND ADMINISTRATION General Dosage and Administration The recommended dosage regimen for TYGACIL is an initial dose of 100 mg, followed by 50 mg every 12 hours. Intravenous infusions of TYGACIL should be administered over approximately 30 to 60 minutes every 12 hours.
The recommended duration of treatment with TYGACIL for complicated skin and skin structure infections or for complicated intra-abdominal infections is 5 to 14 days. The recommended duration of treatment with TYGACIL for community-acquired bacterial pneumonia is 7 to 14 days. The duration of therapy should be guided by the severity and site of the infection and the patient's clinical and bacteriological progress.
Patients With Hepatic Impairment No dosage adjustment is warranted in patients with mild to moderate hepatic impairment (Child Pugh A and Child Pugh B). In patients with severe hepatic impairment (Child Pugh C), the initial dose of TYGACIL should be 100 mg followed by a reduced maintenance dose of 25 mg every 12 hours. Patients with severe hepatic impairment (Child Pugh C) should be treated with caution and monitored for treatment response [see Clinical Pharmacology (12.3) and Use in Specific Populations (8.6)].
Preparation and Handling Each vial of TYGACIL should be reconstituted with 5.3 mL of 0.9% Sodium Chloride Injection, USP, 5% Dextrose Injection, USP, or Lactated Ringer's Injection, USP to achieve a concentration of 10 mg/mL of tigecycline. (Note: Each vial contains a 6% overage. Thus, 5 mL of reconstituted solution is equivalent to 50 mg of the drug.) The vial should be gently swirled until the drug dissolves. Withdraw 5 mL of the reconstituted solution from the vial and add to a 100 mL intravenous bag for infusion (for a 100 mg dose, reconstitute two vials; for a 50 mg dose, reconstitute one vial). The maximum concentration in the intravenous bag should be 1 mg/mL. The reconstituted solution should be yellow to orange in color; if not, the solution should be discarded. Parenteral drug products should be inspected visually for particulate matter and discoloration (e.g., green or black) prior to administration. Once reconstituted, TYGACIL mixed with 0.9% Sodium Chloride Injection, USP or 5% Dextrose Injection, USP may be stored at room temperature for up to 24 hours (up to 6 hours in the vial and the remaining time in the intravenous bag). Alternatively, TYGACIL may be stored refrigerated at 2° to 8°C (36° to 46°F) for up to 48 hours following immediate transfer of the reconstituted solution into the intravenous bag.
TYGACIL may be administered intravenously through a dedicated line or through a Y-site. If the same intravenous line is used for sequential infusion of several drugs, the line should be flushed before and after infusion of TYGACIL with 0.9% Sodium Chloride Injection, USP, 5% Dextrose Injection, USP or Lactated Ringer's Injection, USP. Injection should be made with an infusion solution compatible with tigecycline and with any other drug(s) administered via this common line.
Compatibilities Compatible intravenous solutions include 0.9% Sodium Chloride Injection, USP, 5% Dextrose Injection, USP, and Lactated Ringer's Injection, USP. When administered through a Y-site, TYGACIL is compatible with the following drugs or diluents when used with either 0.9% Sodium Chloride Injection, USP or 5% Dextrose Injection, USP: amikacin, dobutamine, dopamine HCl, gentamicin, haloperidol, Lactated Ringer's, lidocaine HCl, morphine, norepinephrine, piperacillin/tazobactam (EDTA formulation), potassium chloride, propofol, ranitidine HCl, theophylline, and tobramycin.
Incompatibilities The following drugs should not be administered simultaneously through the same Y-site as TYGACIL: amphotericin B and diazepam.
DOSAGE FORMS AND STRENGTHS Each single-dose 5 mL glass vial contains 50 mg of tigecycline as an orange lyophilized powder for reconstitution.
CONTRAINDICATIONS TYGACIL is contraindicated for use in patients who have known hypersensitivity to tigecycline.
HOW SUPPLIED/STORAGE AND HANDLING TYGACIL (gecycline) for injection is supplied in a single-dose 5 mL glass vial containing 50 mg tigecycline lyophilized powder for reconstitution.
Supplied 10 vials/box. NDC: 0008-4990-02
Prior to reconstitution, TYGACIL should be stored at 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F). [See USP Controlled Room Temperature.] Once reconstituted, TYGACIL may be stored at room temperature for up to 24 hours (up to 6 hours in the vial and the remaining time in the intravenous bag). Alternatively, TYGACIL mixed with 0.9% Sodium Chloride Injection, USP or 5% Dextrose Injection, USP may be stored refrigerated at 2° to 8°C (36° to 46°F) for up to 48 hours following immediate transfer of the reconstituted solution into the intravenous bag. Reconstituted solution must be transferred and further diluted for intravenous infusion.
Source: [package insert] |